Pietsch’s variants of s-numbers for multilinear operators
نویسندگان
چکیده
Abstract We study variants of s -numbers in the context multilinear operators. The notion an $$s^{(k)}$$ s ( k ) -scale k -linear operators is defined. In particular, we shall deal with -scales approximation, Gelfand, Hilbert, Kolmogorov and Weyl numbers. investigate whether fundamental properties important linear are inherited to case. prove relationships among some their corresponding classical Pietsch’s a generalized Banach dual operator, from range space forms, on product domain spaces given operator.
منابع مشابه
Transference of Multilinear Operators
We introduce the notion of transference (k + 1)-tuples of strongly continuous mappings defined on an amenable group G. We use these tuples to transfer boundedness properties of multilinear operators from products of Lebesgue spaces into Lp and weak Lp. 0. Introduction and statement of results Fix an integer k ≥ 2. Let G be an amenable group and (M,dμ) a measure space. For 0 ≤ j ≤ k, let 0 < pj ...
متن کاملMultilinear Localization Operators
In this paper we introduce a notion of multilinear localization operators. By reinterpreting these operators as multilinear Kohn-Nirenberg pseudodifferential operators, we prove that these multilinear localization operators are bounded on products of modulation spaces. In particular, by assuming that the symbols of the localization operators belong to the largest modulation space, i.e., M , we ...
متن کاملTriebel–Lizorkin space estimates for multilinear operators of sublinear operators
Let T be the singular integral operator, a well-known result of Coifman, Rochberg and Weiss [6] which states that the commutator [b,T ] = T (b f )− bT f (where b ∈ BMO) is bounded on Lp(Rn)(1 < p < ∞). Chanillo [1] proves a similar result when T is replaced by the fractional integral operator. In [9,11], these results on the Triebel–Lizorkin spaces and the case b∈Lipβ (where Lipβ is the homogen...
متن کاملAnalytic families of multilinear operators
We prove complex interpolation theorems for analytic families of multilinear operators defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We obtain analogous results for analytic families of operators defined on spaces generated by the Calderón method applied to couples of quasi-Banach lattices with nontrivial lattice convexity. As an application we derive a mul...
متن کاملThe Hörmander Multiplier Theorem for Multilinear Operators
In this paper, we provide a version of the Mihlin-Hörmander multiplier theorem for multilinear operators in the case where the target space is L for p ≤ 1. This extends a recent result of Tomita [15] who proved an analogous result for p > 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas
سال: 2021
ISSN: ['1578-7303', '1579-1505']
DOI: https://doi.org/10.1007/s13398-021-01123-2